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1 Introduction

The Tropical Pacific Ocean is a dominant force in global 
climate variability. The coupling between atmosphere and 
ocean dynamics in this region gives rise to a richly com-
plex system that is able to produce a wide range of behav-
iors on a variety of timescales. The most famous of these 
is its interannual variability: El Niño-Southern Oscillation 
(ENSO). ENSO is an oscillation of the SSTs in the eastern 
and central parts of the equatorial Pacific between warm 
and cool phases, known as El Niño and La Niña events 
respectively. This oscillation has a period of 2–7 years, 
and there is a well-known asymmetry between the dura-
tion of La Niña events, which tend to last 1–2 years, and 
El Niño events, which usually last only for 2–4 seasons 
(Okumura and Deser 2010). A second observed mode of 
variability is the less well-understood Pacific Decadal 
Variability (PDV), occurring on decadal to multidecadal 
timescales, which is associated with El Niño-like condi-
tions in its positive phase and La Niña-like conditions in 
its negative phase. In recent decades the Tropical Pacific 
shifted from a warm PDV phase between the 1976–1977 
and 1997–1998 El Niño events to a protracted cool state 
that lasted at least until the 2015–2016 El Niño event. 
Both of these modes of variability have consequences 
for large parts of the globe via atmospheric teleconnec-
tions. On an intermediate timescale, there are also per-
sistent La Niña-like states during which the SSTs in the 
eastern Tropical Pacific maintain a cool mean state over 
several years—longer than the usual duration of a La 
Niña event—with either no El Niño events, or a few very 
weak El Niño events. In a study of persistent droughts 
in North America, Seager et al. (2005) made note of this 
type of behavior in the instrumental record spanning the 
following periods: 1856–1865, 1870–1877, 1890–1896, 
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1932–1939 and 1948–1957; and then 1998–2002 (Seager 
2007).

While the origins of the interannual variability are rela-
tively well-understood, there is no clear consensus on the 
mechanisms that give rise to Tropical Pacific variability 
on longer timescales. Several proposed hypotheses rely 
on variability external to the region to produce decadal to 
multidecadal variability as a forced response through either 
oceanic or atmospheric teleconnections. The midlatitude 
Pacific, where the multidecadal signal was first observed 
(Graham 1994; Mantua et al. 1997), has been considered 
a candidate for the origins of this variability under a few 
hypotheses. It was proposed that temperature anomalies in 
the midlatitudes could propagate to the Tropics along the 
thermocline via advection by the subtropical cell (Deser 
et al. 1996; Gu and Philander 1997), where they may be 
able to alter the background state of the equatorial ocean, 
but subsequent work has shown that these anomalies are 
too small compared to local wind forcing to exert a sig-
nificant influence on the tropical ocean on decadal time-
scales (Schneider et al. 1999). Another way for variability 
in the midlatitudes to influence the Tropics is by producing 
changes in the trade winds (Barnett et al. 1999) that gener-
ate SST anomalies via air-sea fluxes (Vimont et al. 2003).

Another set of hypotheses places the origins of longer-
than-interannual variability of the Tropical Pacific entirely 
outside of the Pacific basin, identifying a role for atmos-
pheric teleconnections from the Atlantic basin (Dong et al. 
2006; Kang et al. 2014) or even an influence from volcanic 
aerosols (Adams et al. 2003).

However, it is possible that the coupled ocean–atmos-
phere system of the Tropical Pacific itself produces vari-
ability on these timescales. A study using a wind-forced 
shallow water model of the Pacific basin demonstrated that 
the variability of the equatorial thermocline on decadal-to-
multidecadal timescales is dominated by wind stress forc-
ing within 20° north or south of the equator (McGregor 
et al. 2007). This is consistent with a scaling analysis based 
on linear wave theory (Emile-Geay and Cane 2009) which 
revealed that midlatitude wind forcing is unable to exert 
any significant influence on the equatorial thermocline on 
timescales less than 50 years. These studies point to wind 
stress anomalies and oceanic planetary waves within the 
Tropical Pacific as being responsible for decadal vari-
ability. An alternative perspective on this phenomenon is 
provided by dynamical systems theory: the chaotic nature 
of the coupled ocean–atmosphere system of the Tropi-
cal Pacific can give rise to an oscillation between different 
regimes of behavior on decadal timescales (Timmermann 
and Jin 2002; Tziperman et al. 1994). Another possibility is 
that stochastic atmospheric variability within the Tropical 
Pacific region produces shifts in ENSO properties on dec-
adal timescales (Flugel and Chang 1999).

Although the decadal signal is strongly expressed in the 
extratropical North Pacific, on which the Pacific Decadal 
Oscillation (PDO) index is based, this extratropical signal 
has been explained as a response to the decadal modulation 
of ENSO in the tropics (Zhang et al. 1997; Newman and 
Alexander 2003; Chen and Wallace 2015; Newman et al. 
2016). Thus, while a variety of factors may play a role, it 
is not necessary to invoke external influence to explain the 
long-term behavior of the Tropical Pacific.

The mechanisms for persistent cool states have not 
been explored in as much depth, and it is possible that 
they may originate from phenomena similar to decadal 
variability. Persistent cool anomalies in the Tropical Pacific 
have become a subject of current interest because of the 
recent behavior of the Tropical Pacific, and because of 
their effects on hydroclimate around the globe. It has been 
argued that the global precipitation footprint of these cool 
states is similar to that of a La Niña event (Seager 2015). 
They have been shown to be responsible for prolonged 
droughts in southwestern North America, such as the Dust 
Bowl drought of the 1930s (Seager et al. 2005; Herweijer 
et al. 2006). Concurrent with these droughts were droughts 
in South America that affected Uruguay, southern Bra-
zil, and northern Argentina (Herweijer and Seager 2008). 
Parts of Eastern Europe extending to Central Asia (Hoer-
ling and Kumar 2003) have also experienced simultaneous 
droughts, along with Western Australia, East Africa, south-
ern India and Sri Lanka (Lyon and DeWitt 2012; Herweijer 
and Seager 2008; Lyon 2014; Yang et al. 2014). Figure 1 
shows the SST and precipitation anomalies across the globe 
(see Sect. 2 for sources of data) for four such events: while 
global patterns of precipitation are not identical across all 
of the events, the areas mentioned above consistently expe-
rience drought during these La Niña-like periods, sugges-
tive of global atmosphere–ocean regimes orchestrated by 
the Tropical Pacific. For comparison, the lower two panels 
of Fig. 1 show the same for a positive and negative phase 
of the PDV. While the effects on North American and East 
African hydroclimate are similar, the conditions in many of 
these regions (e.g., Australia) are quite different between 
the negative phase of the PDV and the persistent cool 
states, which may be because the response is different or 
because of masking by other variability.

There are some subtle differences between the events 
themselves, as well as their impacts. They range in length 
from 7 to 10 years. A few of the events, such as that of 
the 1890s, 1950s and 1999-present, were not uniformly 
cool but had a cool mean state interrupted by El Niño 
events of small magnitude; while others, such as those of 
the 1870s and the 1930s were uninterrupted in their cool 
state. These periods also display an association with large 
El Niño events, with four of the six listed periods (1870–
1877, 1890–1896, 1932–1939, and 1999–2014) beginning 
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(c) (d)

(e) (f)

Fig. 1  a–d show de-trended SST and precipitation anomalies averaged over four persistent cool periods of the Tropical Pacific in the observa-
tional record. e and f Depict the same for periods of positive (1976–1998) and negative (1999–2013) PDV respectively
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immediately after a high-magnitude El Niño event, and 
ending in a similar event (if the recent period was indeed 
ended by the 2015–2016 El Niño event).

Given the global impacts of these cool, quiescent peri-
ods in the Tropical Pacific, it is important to gain a better 
understanding of the dynamics that produce them, espe-
cially in the context of predicting them. Recently, cool 
states in the Tropical Pacific have been shown to play a role 
in modulating the global mean surface temperature (Meehl 
et al. 2011; Kosaka and Xie 2013; Delworth et al. 2015) 
and are therefore implicated in the “global warming hiatus” 
of the early 2000s: a period during which the warming of 
the global mean surface temperature has decelerated from 
the rapid warming of the 1970–1990s (Easterling and Weh-
ner 2009). This provides further incentive to investigate this 
particular phenomenon. While climate models are able to 
simulate the interannual variability of the Tropical Pacific 
with varying degrees of success, it has not been shown that 
they are also able to capture extended cool periods in a real-
istic manner. In this study, we begin by identifying periods 
similar to the prolonged cool states in the observations in 
long unforced runs from two models of differing complex-
ity (Sect. 3): the Zebiak–Cane model (ZC Model), and the 
Geophysical Fluid Dynamics Laboratory’s Coupled Model 
version 2.1 (GFDL Model). The ZC model is an interme-
diate-complexity model which simulates anomalies in the 
Tropical Pacific with respect to a prescribed mean state and 
has been shown to display decadal variability (Cane et al. 
1995; Karspeck et al. 2004). The GFDL model is a full 
coupled general circulation model (GCM) which has been 
previously used to study the predictability of PDV (Witten-
berg et al. 2014). We then assess the predictability of these 
periods in the ZC Model (Sect. 4). With the knowledge that 
the system has some long-term predictability both from 
previous work examining decadal variability (Karspeck 
et al. 2004) and our own results, we then apply our method 
of perturbed ensemble predictions to make retrospective 
forecasts of shifts in the mean state of the Tropical Pacific, 
and to forecast its state for the upcoming decade (Sect. 5).

2  Models and data

The two models used in this study are described below:

2.1  The Zebiak–Cane model

The Zebiak–Cane Model (Zebiak and Cane 1987) is an 
intermediate coupled model of the Tropical Pacific Ocean 
with a simplified global atmosphere and was the first model 
to produce a successful forecast of an El Niño event (Cane 
et al. 1986). Despite its simplicity compared to GCMs, it 
remains a useful tool in modelling ENSO both for scientific 

analysis and operational forecasts (Chen et al. 2004). It has 
also been shown to exhibit the variability in this region over 
longer timescales (Cane et al. 1995). The model simulates 
the ocean above the thermocline in the region 124°E–80°W, 
29°S–29°N with a deeper, motionless lower layer and, 
within the dynamic upper layer, a frictional Ekman layer 
of 50 m depth. It uses an adaptation of the Gill model of 
the atmosphere (Zebiak 1982) that responds to the SSTs 
produced by the ocean model, but does not have internal 
atmospheric noise. The Zebiak–Cane model is an anomaly 
model, meaning that it computes the anomalies of all vari-
ables with respect to a prescribed climatology. This model 
was run for a period of 100,000 years with no forcing.The 
use of this particular model offers a number of advantages. 
The first of these is its computational efficiency: it is fast 
to run and can therefore be used to produce large ensem-
bles for analysis. By simulating anomalies with respect to a 
prescribed seasonal cycle, this model also avoids the draw-
backs of having to simulate the seasonal cycle of the equa-
torial region accurately, which remains a challenge for most 
GCMs. The fact that many hypotheses point to mechanisms 
within the Tropical Pacific being responsible for its longer-
than-interannual variability means that the decadal vari-
ability observed in the model (Cane et al. 1995) is likely 
to bear resemblance to the real-world variability despite its 
lack of an extratropical ocean; if the model instead is una-
ble to simulate persistent cool states or decadal variability 
comparable to that in the observations, it may indicate that 
the extratropics or factors external to the Pacific basin are 
indeed a key driver of this phenomenon.

2.2  The GFDL coupled model (version 2.1)

This is a coupled GCM that is designed to capture the full 
complexity of climate variability with atmosphere, ocean, 
land, and ice components; and is among the models used 
in the Coupled Model Intercomparison Projects 3 and 5 
(Delworth et al. 2006). A 4000-year unforced simulation 
from this model with no variability in solar or aerosol forc-
ing (Wittenberg et al. 2014) was analyzed in this study.It 
is useful to examine persistent cool states in this particular 
model as it has been used to study the Tropical Pacific sys-
tem both on decadal (Wittenberg et al. 2014) and interan-
nual (Kug et al. 2010; Takahashi et al. 2011) timescales. A 
comparison of this model with the observations and the ZC 
model can also be instructive: if this model simulates per-
sistent cool states with substantially more accuracy than the 
ZC model can, it would imply that the extratropics and the 
Atlantic Ocean in particular may in fact be crucial to gener-
ating this variability. If neither the ZC model nor this model 
are able to produce this variability, there may be something 
fundamental missing from the simulations, or it may be the 
case that radiative forcing in some form is required to give 
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rise to persistent cool states.The observational datasets used 
were the Kaplan Extended Sea Surface Temperature Ver-
sion 2 (KSST) (Kaplan et al. 1998), a gridded SST dataset 
that spans the period from 1856 to the present, and station 
precipitation data from the Global Historical Climatology 
Network (GHCN) (Vose et al. 1992) developed and main-
tained by the National Oceanic and Atmospheric Admin-
istration’s National Climate Data Center (NOAA NCDC) 
and the U.S. Department of Energy’s Carbon Dioxide 
Informational Analysis Center (DoE CDIAC).

3  Persistent cool states in the ZC model 
and GFDL model

Our first step was to identify whether analogs to the 
observed persistent cool states exist in the model simula-
tions. We use the Niño 3 index as an indicator of the state of 
the Tropical Pacific in this study. This index is calculated as 
the time series of the spatial average of SSTs in the region 
spanning 90°W–150°W, 5°S–5°N in the eastern Tropical 
Pacific with the seasonal cycle removed, and is a common 
measure of ENSO variability. Before comparing the output 
from the model simulations with the observations, the Niño 
3 time series from each of these were filtered using a low-
pass Butterworth filter with a cutoff period of 4 months. 
Since this work focuses on longer-term variability, the 
high-frequency component of the variability in the observa-
tions can be considered noise, and was filtered out in order 
to make the two time series comparable.

Four long La Niña events were used to select analogs 
from the 100,000-year time series: 1870–1877, 1890–1896, 
1932–1939, and 1948–1957. These were all periods of a 
mean cool state in the Tropical Pacific that coincided with 
major droughts in western North America as identified in 
previous studies (Seager et al. 2005; Herweijer and Seager 
2008). For each of these events, the segment of the filtered 
Niño 3 time series beginning 3 years prior to the start of 
the event until the end of the event (for example, for the 
first event, the segment spanning January 1867 to Decem-
ber 1877) from the observations was correlated with each 
possible continuous segment of the same length from the 
filtered Niño 3 index from the models.

Figure 2 shows the best analog—i.e., the segment hav-
ing the highest correlation with the observed time series—
for each event in each of the models along with the Niño 
3 time series from the observations. These high-correlation 
analogs not only have similar trajectories to the observed 
Niño 3 time series, but also capture the mean cool state for 
the duration of the event. Interestingly, in all cases the ZC 
model shows higher correlation coefficients than the GFDL 
model despite being the simpler of the two models, and is 
able to capture the quiescence of the observed Niño 3 time 

series more accurately. This is possibly a consequence of 
the much longer time series from the ZC model.

The distributions of correlation coefficients calculated 
in this way for every continuous segment beginning in 
January of the model simulations for each of the events 
is shown in Figs. 3 and 4 for the ZC and GFDL models 
respectively. The same procedure was then repeated using 
the segment from the model simulation that had the high-
est correlation with the observations (the “best analog”) 
for each of the four events. The best analog, being from 
the simulation itself, attempts to capture the mode of vari-
ability produced by the model that most resembles the cool 
periods in the real world. Comparing the model run with 
this segment sheds light on whether the model reproduces 
itself much better than it does reality.

Figures 3 and 4 provide us with information on three 
aspects of the models’ ability to reproduce the cool peri-
ods observed in the real world. Firstly, the fact that there 
do exist several instances of correlation coefficients greater 
than 0.5 indicates that both models are able to produce 
periods similar to the observed cool states that are repeata-
ble and not just stray events. Secondly, the fact that the bulk 
of the segments in all of the cases correlate poorly or not 
at all with the observed cool periods is consistent with the 
models capturing these as a small subset of events, rather 
than the simulations being dominated by states resembling 
the persistent La Niña-like periods. A third piece of infor-
mation comes from the blue lines: the distributions of cor-
relation coefficients between segments from the model and 
its own best analog. In the GFDL model, these distributions 
show a distinct shift to the right, i.e., an increase in the cor-
relation coefficients. Although the ZC model does not have 
this shift to the right, the blue curves display distributions 
with fatter tails than the black curves, meaning that the 
number of highly-correlated segments is higher when the 
best analog from the model itself is used. Since the models 
are imperfect in their representation of reality, they can be 
expected to favor a resemblance to their own behavior more 
than to the observations, giving rise to this shift. The less 
the model analogs look like reality, the more pronounced 
this shift to the right would be. The fact that using the best 
analog instead of the observed events still produces distri-
butions with only a small fraction of the correlation coef-
ficients being higher than 0.5 shows that the models capture 
the rarity and distinctiveness of the extended La Niña-like 
states in the observations.

In order to facilitate a comparison between the num-
ber of analogs found in the two model runs of differ-
ent lengths, we split the 100,000 years of the ZC model 
output into 25 continuous segments of 4000 years (the 
same length as the GFDL model output), and calculated 
similar distributions of correlation coefficients using 
each of the 25 segments. Figure 5 shows the spread of 
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these distributions along with the corresponding distri-
bution calculated from the GFDL model output for cor-
relation coefficients greater than 0.5. The distribution of 
the high correlations in the GFDL output stays, for the 
most part, within the range of that of the 25 ZC model 
segments. This suggests that the higher correlation coef-
ficients obtained from the ZC model may simply be a 
consequence of the ZC model run being far longer than 
the GFDL model run, and that we cannot conclude that 

the ZC model has more skill in producing analogs to the 
observed cool states.

4  Predictability of persistent cool states in the ZC 
model

Since the models do capture the persistent cool states, it 
is useful to determine whether these states are predictable 
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in the models, or too sensitive to initial conditions to be 
predicted. We use ensembles of simulations from the ZC 
model in order to answer this question. This was done 
using a method similar to that of Karspeck et al. (2004). 
For each of the four events, twenty analogs were selected. 
There were two criteria applied in the selection of these 
analogs:

1. The analogs must not have an SST anomaly in their 
Niño 3 time series greater than 2 °C from the begin-
ning to the end of the cool period. This criterion was 
applied in order to ensure that there were no large El 
Niño events within the cool period of the analog, as 
this would disqualify it from being similar to the cool 
periods in the observations.

2. Among the analogs that remain below 2 °C, the twenty 
with the highest correlation coefficients when corre-
lated with the observations for each of the events were 
selected.

For each of these 80 selected analogs, we ran a set of 100 
perturbed experiments. The initial state in these experi-
ments was set as the state of the model 1 year prior to the 
start of the event in the analog with an added perturbation 
that was different for each of the 100 simulations. The per-
turbation was specified as a change to the initial SST field: 
at each spatial point, a number was randomly selected from 
a uniform distribution with a mean of zero and a standard 
deviation equal to one-fifth of the standard deviation of the 
full 100,000-year time series of SST anomalies at that spa-
tial point, and added to the initial SST field at that point. 
Thus for each of the four events an ensemble of 2000 (20 
analogs × 100 different perturbed initial states) simulations 
was run, giving a total of 8000 simulations. Each of these 
simulations was run for a period of 20 years.

Figure 6 shows the root mean squared error (RMSE) of 
the ensembles of predictions with respect to the time series 
that they were trying to predict. As expected, the predic-
tions are unable to reproduce similar trajectories to the 
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observed events beyond a few seasons—the RMSE values 
in all cases reach values near 1 °C or greater at timescales 
of a few years or more. Of the four events, that of 1932 
stands out as having the lowest RMSE values across ana-
logs, with it remaining below 1 °C for many years. The 
other extreme is the 1948 event, with the predictions show-
ing a consistently high RMSE that climbs above 1 °C in 
about a year.

Figure 7 allows us to examine the RMSEs in more detail 
by showing the distribution of the RMSE over the 100 predic-
tions for each of the 20 analogs for each event over the full 
duration of the event. The analogs are ranked along the x-axis 
from highest to lowest correlation with the observed time 
series. The standard deviation of the observed time series that 
each prediction was attempting to reproduce is also indicated. 
Note that the success of the predictions does not display 
any consistent relationship to the magnitude of the correla-
tion coefficient between the analogs and the observed time 
series. While the RMSE values for the 1932 event are low, 
as in Fig. 6, the large spread shows that there are also several 
ensemble members that make unsuccessful predictions.

Figures 6 and 7 show that it is unrealistic to expect 
the perturbed ensembles to predict the exact trajectories 
of the cool periods over their full duration. However, the 
ensembles may predict the occurrence of a persistent cool 
state without following the exact same trajectory; i.e., 
the long-term statistics of the persistent cool states may 
be predictable despite the sensitivity of the predictions 
to initial conditions. In order to explore this possibility, 
we consider two criteria that characterize these persistent 
cool states:

1. Did the predicted Niño 3 time series have a negative 
mean anomaly for a similar duration to the length of 
the cool period in the observations (and analogs)?

2. Did the predicted Niño 3 time series remain below 
2 °C for a similar duration to the length of the cool 
period in the observations (and analogs)?

Figure 8 depicts the spread of the percentage of correct pre-
dictions over the twenty analogs corresponding to each of 
the events according to the first criterion. This is shown as 
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the evolution of the prediction of the long-term mean from 
4 to 10 years after the initialization of the model. Evalu-
ated in this way, the predictions fare better. For both the 
1870 and 1890 events, the bulk of the analogs produce a 
correct prediction of the negative mean state, with only 
one or two outliers predicting a warm mean. For the 1932 
event, the spread is so large as to fill the entire range of 
possibilities from 0 to 100%. The median prediction is cor-
rect near the timescale of the length of the event, however, 
indicating that the model does have some modest success 
even with this prediction. The incorrect prediction in earlier 
years shows that the model produces, in many instances, 
an El Niño event followed by a cooler period which allows 
the prediction to recover a cool mean state in later years. 
This means that even though the model is able to predict 
the analogs for this event quite well (as seen in the RMSE 
values from Figs. 6 and 7), the low similarity of the model 
analogs to this event in the observations (indicated by the 
correlation coefficients in Fig. 5) may be causing the cool 
mean state to be relatively poorly predicted. The model 

largely fails to predict the 1948 event, with only a few out-
liers making a correct prediction. This is consistent with 
both the RMSE results in Fig. 7 which indicated that the 
1948 event would be the least accurately predicted, and the 
correlation coefficient values from Fig. 5 which showed 
that the model has relatively few good analogs to this event.

The percentage over the entire ensemble (not separated 
according to analogs) that predict a negative mean is shown 
in Table 1. The values in this table confirm the successful 
predictions of 1870 and 1890, the modest success in later 
years in the case of 1932, and the poor performance for 
1948. It is worth noting that the 4-year mean for the 1948 
event is overwhelmingly predicted to be cool, indicating 
that the model is able to predict a La Niña event soon after 
initialization, but not its persistence in this case.

Turning to the second criterion, the model performs 
worse than for the first criterion in all cases except for the 
1870 event. Figure 9 displays the results of the ensemble 
predictions evaluated based on whether the Niño 3 time 
series remains below the 2 °C threshold. The 1870 event is 
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predicted very well and the 1890 event is only slightly less 
well-predicted in this case. In the case of the 1932 event, 
an El Niño event produced early in the predicted timeseries 
crosses the threshold, preventing most analogs from mak-
ing a correct prediction according to this criterion. The pre-
diction fails altogether in the 1948 case.

 Table 2 lists the percentage of correct predictions 
according to the second criterion over the entire ensemble 
for each of the events. These values paint a similar pic-
ture to Fig. 9. The 1932 event shows the biggest difference 
between the two criteria: while its cool mean state is some-
what predictable, its lack of large El Niño events is not.

When both criteria are considered together, 68 and 64% 
of the full 2000-member ensemble correctly predict the 
8-year 1870 event and the 7-year 1890 event. This num-
ber is lower than the corresponding values in both Tables 1 
and 2, indicating that the two criteria do not always occur 
together, but is high enough that they can be consid-
ered successful predictions of both events. For the 1932 
(8 years) and 1948 (10 years) events, the percentage that 
predict both criteria correctly are extremely low, at 13 and 
14% respectively. In the 1932 case, it is clear from Tables 1 
and 2 that the incorrect predictions of the second criterion 
are responsible for this low value, whereas in the case of 
1948, it is simply a reflection of the poor performance of 
the ensemble forecast for this event.

In summary, the persistence of the cool mean state is 
predictable for 1870, 1890, and 1932, while the absence 

of large El Niño events is not as predictable. Predictions of 
the cool mean state, however, have low confidence due to a 
large spread over the analogs; while this is partly a conse-
quence of some analogs having higher predictability than 
others as seen in Fig. 7, it is also an indication that the ana-
logs in the model are sensitive enough to initial conditions 
that predictions with high confidence may be difficult to 
achieve even with more sophisticated prediction schemes.

5  Forecasts of the decadal mean state in the ZC 
model

Given that the multi-year cool states have some predict-
ability, and that the mean state of the Tropical Pacific shifts 
between warm and cool states on decadal timescales, we 
next perform a set of forecast experiments in order to deter-
mine whether it is possible to predict when the model is 
about to shift into a cooler or warmer decadal mean state. 
In Sect. 4, experiments were performed with the objective 
of testing whether a small perturbation to the initial state of 
the model was enough to prevent the system from taking a 
known trajectory—that of a persistent cool state. Since the 
analogs were selected by correlating with the cool periods, 
the entire model atmosphere–ocean state at the beginning 
of the analogs were effectively constrained by the informa-
tion that the Niño 3 index of the analog would be in a cool 
mean state for a few years into the future. In the following 

Fig. 6  The root mean squared 
error averages over the entire 
ensemble of 2000 predictions 
for each of the events, with 
respect to the analog they were 
attempting to predict. The bold 
line depicts the mean while the 
dashed lines show one standard 
deviation above and below the 
mean
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experiments, we instead test whether it is possible to make 
forecasts of changes to the decadal mean state without 
including any information from the future, by choosing 
analogs based on correlations only with years prior to a 
shift in the mean state. In other words, these can be thought 
of as experiments performed in order to determine whether 
the model trajectory in the years leading up to the shift in 
the mean state contains enough information to predict the 
change in the decadal mean state.

We performed three hindcast experiments based on ana-
logs to known decadal-scale shifts in the state of the Tropi-
cal Pacific: a shift from a warm to a cool state (“cool shift”) 
in 1943, a shift from a cool to a warm state (“warm shift”) 
in 1976, and a “neutral” period with no shift in the mean 
state centered on 1903. These three periods have been stud-
ied in earlier work (Karspeck et al. 2004) that examined 
their predictability. In each case, we selected the twenty 
15-year segments of the ZC model output having the high-
est correlation coefficients with the 15 years prior to the 
year of the shift (but not including the shift itself) as 

analogs.1 For the 1943 cool (1976 warm) shift, the addi-
tional condition that the analog to the 15 years prior to the 
shift had a warm (cool) mean state was imposed; that is, a 
15-year segment qualified as having a warm (cool) mean 
state if its mean was in the upper (lower) two quintiles of 
the distribution of all 15-year-means from the full 100,000-
year run of the ZC model. The model was initiated in Janu-
ary of the 15th year of the segment, with perturbations 
added to the SST field using the same method as in Sect. 4, 
for an ensemble of 100 different simulations for each of the 
sets of 20 analogs, and run for 15 years.

We classified the results based on the quintiles from the 
distributions of 15-year means over the entire 100,000-year 
run of the ZC model as being correct, weakly correct, or 

1 The Karspeck et al. (2004) study, by contrast, used analogs that 
were based on a correlation with a 30-year period spanning the 
15 years before and after the shift, thus including information from 
after the shift in the analog selection.
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wrong, based on the scheme used in Karspeck et al. (2004). 
For a warm (cool) shift, the prediction was correct if the 
mean of the predicted 15-year period was in the uppermost 
(lowermost) quintile. It was weakly correct if the predicted 
15-year mean was in the second-highest (-lowest) quintile, 
and wrong otherwise. For the neutral state, the results were 
correct if the predicted 15-year mean fell within the middle 
quintile, wrong if it fell in either of the extreme quintiles, 
and weakly correct otherwise. The results of this classifica-
tion are shown in Table 3.

Given that the probability of falling within each of the 
quintiles is 20% by pure chance, the distribution by chance 
between correct, weakly correct, and wrong is 20, 20 and 
60% for the warm and cool shifts, and 20, 40 and 40% for 
the neutral shift. The neutral state is the best-predicted of 

the three, with 32% of the predictions falling within the 
correct category, compared to 20% expected by chance. 
The warm shift hindcasts also perform better than chance, 
with 29% of the predictions being correct. However, the 
cool shifts are predicted worse than by pure chance with 
73% of the predictions falling into the wrong category. This 
implies that the model state at the time of a cool shift is 
extremely sensitive to initial conditions, leading to pre-
dictions of a warm or neutral shift instead when perturba-
tions are added. These results are consistent with those of 
Karspeck et al. (2004), who found shifts to a warm state to 
have higher predictability than shifts in the opposite direc-
tion in this model.

We examine these hindcasts more closely in Fig. 10, 
which shows the temporal evolution of the spread of the 

Fig. 8  The spread of the 
predictions over the 20 analogs 
for each case. On the y-axis is 
the percentage of cases (out 
of the 100 corresponding to 
each analog) that maintained 
a negative mean from the start 
date to the beginning of the year 
indicated on the x-axis. The 
colored solid lines show the 
median, the dashed lines show 
the quartiles, and the gray lines 
depict the individual analogs. 
The dotted red lines indicate the 
end of each cool period in the 
observations
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Table 1  Predictions of a 
negative mean over various 
periods from the full ensemble 
of 2000 experiments for each 
of the events, with the standard 
deviation of the prediction

The standard deviations are estimated using 1000 randomly-sampled subsets (with replacement) of 100 
ensemble members each. The values in bold highlight the length of the cool period in the observations

Event 4 years 5 years 6 years 7 years 8 years 9 years 10 years

% With a negative mean

 1870 71 ± 2.0 57 ± 0.1 79 ± 0.7 87 ± 0.6 79 ± 0.4 82 ± 0.4 88 ± 0.4

 1890 91 ± 2.1 42 ± 2.0 63 ± 0.9 81 ± 2.3 72 ± 2.2 76 ± 2.2 81 ± 0.7

 1932 63 ± 0.9 20 ± 2.1 44 ± 2.1 55 ± 1.7 52 ± 1.7 45 ± 2.1 55 ± 1.5

 1948 95 ± 1.6 26 ± 1.9 28 ± 2.1 30 ± 1.8 32 ± 1.8 30 ± 2.0 36 ± 2.1
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number of correct and weakly correct predictions across 
the 20 analogs. Here, we use quintiles as described above 
for the length of time from the beginning of the prediction 

ranging from 4 to 15 years (e.g., the ensemble spread 
5 years into the prediction was classified using the quintiles 
of the distribution of 5-year means from the long run). In 
the case of warm and cool shifts, the percentage of correct 
and weakly correct predictions depicted should be com-
pared against the “pure chance” prediction of 20%. Based 
on this metric, a correct prediction of the warm mean is 
made consistently after 1984 (i.e., 8 years into the predic-
tion) as both the median percentage of correct predictions 
and weakly correct predictions (bold green and purple 
lines, respectively) each remain above the 20% line. The 
range of predictions also shows that some of the analogs 
make a correct prediction over 70% of the time. By con-
trast, the cool shift is poorly predicted with both correct 
and weakly correct predictions remaining below 20% for 
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Fig. 9  As in Fig. 8, evaluating predictions based on whether the predicted Niño 3 time series remained below 2 °C (correct) or not (incorrect)

Table 2  As in Table 1, for 
predictions of the Niño3 index 
remaining below 2 °C

The values in bold highlight the length of the cool period in the observations

Event 4 years 5 years 6 years 7 years 8 years 9 years 10 years

% Below 2 °C

 1870 95 ± 2.3 95 ± 2.3 93 ± 2.3 84 ± 2.3 84 ± 2.3 83 ± 2.2 79 ± 2.2

 1890 84 ± 0.9 83 ± 1.2 80 ± 1.2 72 ± 2.1 71 ± 1.9 69 ± 1.9 66 ± 1.9

 1932 33 ± 0.2 33 ± 0.2 33 ± 0.2 27 ± 0.2 27 ± 0.2 27 ± 0.2 26 ± 0.2

 1948 35 ± 1.6 35 ± 1.6 31 ± 1.6 25 ± 1.5 24 ± 1.5 24 ± 1.5 22 ± 1.4

Table 3  Classification of the hindcast predictions into correct, 
weakly correct, and wrong categories based on the quintiles of the 
distribution of 15-year means over the entire 100,000-year model 
simulation

The standard deviations indicated were estimated as in Tables 1 and 2

Year of the shift Correct (%) Weakly correct (%) Wrong (%)

1976 (warm) 29.10 ± 2.22 24.70 ± 1.37 46.20 ± 1.84

1943 (cool) 9.85 ± 0.67 16.60 ± 0.84 73.55 ± 1.08

1903 (neutral) 32.45 ± 1.88 46.80 ± 1.73 20.75 ± 0.81
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the entire prediction. However, the spread over the analogs 
shows that there are some analogs that make a correct pre-
diction, with the upper quartile of the weakly correct pre-
dictions being above 20%.

The third panel shows the same for the neutral shift. 
This is the best-predicted of all the cases with the median 
correct and weakly correct predictions remaining above 20 
and 40% respectively. Note that in this case, the weakly 
correct prediction should be compared to the pure chance 
prediction of 40%. In all cases, the envelope of the predic-
tions narrows over time, suggesting that there is more con-
fidence in predictions made over a 15-year timescale than 
over a shorter timescale of 8–10 years. This narrowing of 
the range of predictions is distinct from the convergence of 
the long-term mean to a single value, as the classification 
uses quintiles that correspond to the length of time from the 
beginning of the prediction.

Finally, a fourth forecast experiment was run using the 
same method with analogs to the 1999–2014 period in 
order to predict whether there will be a shift from this cool 
state to a warmer state in the near future. This forecast was 
initialized in August 2015, as the major El Niño event of 
2015–2016 was developing. The results are shown in the 
bottom-right panel of Fig. 10.

This ensemble is most heavily weighted towards a neu-
tral mean in the future, with 34.5% of the predictions fall-
ing within the central quintile and 41.2% of the predictions 
in the second and fourth quintiles combined. This indicates 

a high-confidence prediction of a shift to a neutral mean 
state. Given that the analogs used to make this prediction 
were originally in a cool state, with 17 out of the 20 in 
the lowest quintile, it is clear that this implies a shift to a 
warmer state from that of the analogs. Thus, this prediction 
can be interpreted as a warm shift, but with the resulting 
state maintaining a neutral mean.

Figure 11 displays the spread of the annual means pre-
dicted by the full ensemble, and confirms that the model 
prediction is of a positive mean, albeit of low magnitude. 
The entire ensemble correctly predicts an El Niño event in 
2015–2016, with most ensemble members predicting a La 
Niña event immediately after, as is currently anticipated 
(International Research Institute for Climate and Society, 
2016, available at http://iri.columbia.edu/our-expertise/cli-
mate/forecasts/enso/current). The model predicts that this 
La Niña event will last for 2 years, after which the spread 
among ensemble members grows larger. The thick red line 
shows the evolution of the median prediction of the mean 
value of Niño 3 with the averaging beginning at the start 
of the prediction. While there is significant variability over 
the years following 2017, the mean remains warm. The 
influence of the predicted El Niño event of 2015–2016 on 
the 15-year mean is not solely responsible for the warm 
state: while 72% of the ensemble members predict a warm 
15-year mean, if the averaging is begun a year later to 
exclude the initial El Niño event, 58% of them still make 
this prediction.

Fig. 10  The spread over 
analogs for predictions of the 
decadal mean classified as 
correct (green) and weakly 
correct (purple) according to 
the quintile scheme described in 
the text. Solid lines indicate the 
median, dashed lines indicate 
the upper and lower quartiles, 
and the translucent shading fills 
in the range between extremes. 
Note that the prediction by 
pure chance is 20% in all cases 
except for the weakly correct 
classification in the lower two 
panels, where it is 40%

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current
http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current
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6  Discussion and conclusion

Both the ZC and GFDL models are able to produce the 
type of quiescent, cool behavior of the Tropical Pacific that 
forces large-scale, prolonged droughts. The presence of 
these analogs in the models has implications for hypoth-
eses regarding the origins of these cool periods in real-
ity. Since both of the models used were unforced for the 
entire period, we can infer that the cool periods observed in 
nature were not necessarily a product of forcing by exter-
nal factors such as aerosols or solar activity, allowing for 
the possibility that they are a feature of the natural, intrin-
sic variability of the climate system. The fact that the ZC 
model, which only simulates the tropical Pacific, is able 
to capture such behavior with as much skill as the GFDL 
model demonstrates that the addition of the Atlantic Ocean 
or the extratropics need not improve the simulation of these 
states, meaning that mechanisms originating in these parts 
of the world (Dong et al. 2006; Kang et al. 2014; Barnett 
et al. 1999; Vimont et al. 2003; Gu and Philander 1997) 
may not be necessary for their development. This points to 
the tropical Pacific itself being able to produce these cool 
periods independently, without requiring the influence of 
any other part of the globe.

The ZC model had great difficulty running for more than 
a few years without producing an El Niño event. However, 
the model is able to predict the negative mean temperature 
anomaly over multi-year periods; this extends to the multi-
year timescale the limited predictability that Karspeck et al. 
(2004) found for decadal timescales. The existence of some 
predictability on these timescales also implies that long-
term variability is not driven entirely by stochastic pro-
cesses (Flugel and Chang 1999) in this model.

The model is able to make predictions of the cool mean 
state in all cases except for the 1948 event. This may indi-
cate that the cool states in the model have more in common 
with those periods that take place immediately after large 
El Niño events (such as 1870, 1890, 1932, and 1999–2014) 
than the periods that are continuously cool, such as the 
1950s. While the 1870 event has the highest correlations 
with the ZC model (up to 0.9), the distribution of the corre-
lations with the best analog for the 1890 event has the high-
est number of segments with a correlation higher than 0.5. 
Therefore, it is likely that the predictability of the analogs 
of these two events arises for different reasons: the 1870 
event is the one that most resembles the model’s behav-
ior, and the 1890 event, while not quite as well-correlated 
with its analogs, has analogs that are representative of some 
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recurring state of the model. This suggests that the model’s 
own version of the cool periods may be quite predictable 
using more elaborate methods than those in this study.

Although the procedure for selecting analogs could eas-
ily be improved, the lack of improvement in forecast skill 
with an increase in the correlation coefficient of the analogs 
(seen in Fig. 7) suggests that using higher-quality analogs 
based on correlation is unlikely to significantly enhance the 
forecast skill. It is therefore likely that information other 
than the Niño 3 index will be required to improve predic-
tions. More sophisticated constraints than a simple corre-
lation and restriction of the long-term mean value could 
be applied to the process of finding analogs in the Niño 3 
time series; but more importantly, other information from 
the models could also be included in the analog selection 
process, such as thermocline depth, wind stress patterns, or 
spatial information regarding the SST field.

A more detailed characterization of the states produced 
by the model and identifying what features the cool peri-
ods have in common will also allow us to investigate the 
mechanisms that could drive the persistence of these La 
Niña-like states, understand the processes by which they 
develop, and determine the features that give rise to their 
predictability.

For decadal timescale shifts, given the limitations of the 
method and simplicity of the model used, it is quite remark-
able that the shift to a warm mean state in 1976 could be 
predicted. This simple method used implies that a signifi-
cant portion of the information required in order to make 
a forecast of a warm shift is contained within the Niño 3 
index itself. The continuation of a neutral mean state is 
similarly predictable, also proving that the model does not 
always make a prediction of a warm shift.

The ensemble initialized in August 2015 produces a 
fairly high-confidence prediction of a moderate shift to a 
warmer state. A forecast using the same method in 2004 
made the correct prediction of the continuation of the cool 
state until 2013 (Seager et al. 2004), showing that while 
the model is unable to make a skillful forecast of a shift to 
a cool state, it has the ability to predict a continuing cool 
state. This lends further confidence to the forecast of a shift 
now to a warmer state. The predicted annual means show 
significant interannual variability over the 15-year period, 
similar to warm periods that have been observed in the past. 
As this forecast was made using the unforced ZC model, it 
relies on the current cool mean state being a product of the 
internal variability of the tropical Pacific system, and not 
the result of anthropogenic forcing or variability in other 
parts of the world (which is not necessarily the case (Cane 
et al. 1997)). That the unforced ZC model is able to pro-
duce analogs to the current state of the system implies that 
it could be a product of natural variability alone.

The demise of the cool mean state in the tropical 
Pacific would have significant implications. One of these 
is the easing of the drier-than-normal conditions currently 
affecting the southwestern United States and other parts 
of the subtropics (Delworth et al. 2015), even as human-
driven hydroclimate change advances (Seager et al. 2007). 
Another possible consequence is the end of the global 
warming “hiatus”, with surface temperature rise accelerat-
ing to a rate similar to that prior to 1998.
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